

VMware Storage APIs for Array Integration
with the Pure Storage FlashArray

August 2015

© Pure Storage 2015 | 2

Contents

Executive Summary ...3

Goals and Objectives ...3

Audience ..3

Pure Storage Introduction ...3

VAAI Best Practices Checklist .. 5

Introduction to VAAI ... 6

Enabling VAAI ... 7

Disabling Hardware Assisted Locking on Incompatible Arrays... 9

Hardware Assisted Locking or Atomic Test & Set .. 10

Full Copy or Hardware Accelerated Copy... 12

Deploy from Template ... 15

Simultaneous Deploy From Template Operations.. 16

Storage vMotion ... 17

Virtual Disk Type Effect on XCOPY Performance .. 18

Block Zero or WRITE SAME ... 20

Deploying Eagerzeroedthick Virtual Disks .. 21

Zeroedthick and Thin Virtual Disks Zero-On-New-Write Performance .. 22

Dead Space Reclamation or UNMAP ... 25

UNMAP Operation Duration .. 27

In-Guest UNMAP in ESXi 6.x ... 29

Monitoring VAAI with ESXTOP ... 30

References .. 33

About the Author ... 33

© Pure Storage 2015 | 3

Executive Summary

This document describes the purpose and performance characterizations of the VMware Storage APIs for
Array Integration (VAAI) with the Pure Storage FlashArray. The Pure Storage FlashArray includes general
support for VMware ESXi as well as the most important VAAI primitives that enable administrators to
enhance and simplify the operation and management of VMware vSphere virtualized environments.
Throughout this paper, specific best practices on using VAAI with Pure Storage will be discussed.

Goals and Objectives

This paper is intended to provide insight for the reader into how VMware VAAI behaves when utilized on the
Pure Storage FlashArray. This includes why a feature is important, any best practices, expected operational
behavior, and performance.

Audience

This document is intended for use by pre-sales consulting engineers, sales engineers and customers who
want to deploy the Pure Storage FlashArray in VMware vSphere-based virtualized datacenters.

Pure Storage Introduction

Pure Storage is the leading all-flash enterprise array vendor, committed to enabling companies of all sizes to
transform their businesses with flash.

Built on 100% consumer-grade MLC flash, Pure Storage FlashArray delivers all-flash enterprise storage that is
10X faster, more space and power efficient, more reliable, and infinitely simpler, and yet typically costs less
than traditional performance disk arrays.

 Figure 2. Pure Storage FlashArray//m Figure 1. Pure Storage FlashArray 400 Series

© Pure Storage 2015 | 4

The Pure Storage FlashArray is ideal for:

Accelerating Databases and Applications Speed transactions by 10x with consistent low latency, enable online
data analytics across wide datasets, and mix production, analytics, dev/test, and backup workloads without
fear.

Virtualizing and Consolidating Workloads Easily accommodate the most IO-hungry Tier 1 workloads, increase
consolidation rates (thereby reducing servers), simplify VI administration, and accelerate common
administrative tasks.

Delivering the Ultimate Virtual Desktop Experience Support demanding users with better performance than
physical desktops, scale without disruption from pilot to >1000’s of users, and experience all-flash
performance for under $100/desktop.

Protecting and Recovering Vital Data Assets Provide an always-on protection for business-critical data,
maintain performance even under failure conditions, and recover instantly with FlashRecover.

Pure Storage FlashArray sets the benchmark for all-flash enterprise storage arrays. It delivers:

Consistent Performance FlashArray delivers consistent <1ms average latency. Performance is optimized for
the real-world applications workloads that are dominated by I/O sizes of 32K or larger vs. 4K/8K hero
performance benchmarks. Full performance is maintained even under failures/updates.

Less Cost than Disk Inline de-duplication and compression deliver 5 – 10x space savings across a broad set of
I/O workloads including Databases, Virtual Machines and Virtual Desktop Infrastructure.

Mission-Critical Resiliency FlashArray delivers >99.999% proven availability, as measured across the Pure
Storage installed base and does so with non-disruptive everything without performance impact.

Disaster Recovery Built-In FlashArray offers native, fully-integrated, data reduction-optimized backup and
disaster recovery at no additional cost. Setup disaster recovery with policy-based automation within minutes.
And, recover instantly from local, space-efficient snapshots or remote replicas.

Simplicity Built-In FlashArray offers game-changing management simplicity that makes storage installation,
configuration, provisioning and migration a snap. No more managing performance, RAID, tiers or caching.
Achieve optimal application performance without any tuning at any layer. Manage the FlashArray the way
you like it: Web-based GUI, CLI, VMware vCenter, Rest API, or OpenStack.

FlashArray scales from smaller workloads to data center-wide consolidation. And because upgrading
performance and capacity on the FlashArray is always non-disruptive, you can start small and grow without
impacting mission-critical applications. Coupled with Forever Flash, a new business model for storage
acquisition and lifecycles, FlashArray provides a simple and economical approach to evolutionary storage that
extends the useful life of an array and does away with the incumbent storage vendor practices of forklift
upgrades and maintenance extortion.

http://www.purestorage.com/forever/

© Pure Storage 2015 | 5

VAAI Best Practices Checklist

The following section is intended as a quick-start guide for using VAAI functionality on the Pure Storage
FlashArray. Refer to the relevant sections in the rest of the document for more information.

Acknowledged/Done? Description

Ensure proper multipathing configuration is complete. This means
more than one HBA and connections to at least four FlashArray ports
(two on each controller). All Pure Storage devices should be
controlled by the VMware Native Multipathing Plugin (NMP) Round
Robin Path Selection Policy (PSP). Furthermore, it is recommended
that each device be configured to use an I/O Operation Limit of 1.

Ensure that all VAAI primitives are enabled.

For XCOPY, set the maximum transfer size
(DataMover.MaxHWTransferSize) to 16 MB.

When running UNMAP in ESXi 5.5 and later, use a block count that is
equal to or less than 1% of the free capacity on the target VMFS. A
PowerCLI script to execute UNMAP can be found here.

WRITE SAME and ATS have no specific recommendations.

In ESXi 6.0+, set the EnableBlockDelete option to “enabled”. This is
the only primitive not enabled by default.

Pure Storage does not support DISABLING VAAI features on ESXi hosts—if you must to disable it for
some reason please must contact Pure Storage support if the affected ESXi hosts also have access to
Pure Storage FlashArray devices.

https://github.com/codyhosterman/powercli/blob/master/unmap.ps1

© Pure Storage 2015 | 6

Introduction to VAAI

The VMware Storage APIs for Array Integration (VAAI) is a feature set first introduced in vSphere 4.1 that
accelerates common tasks by offloading certain storage-related operations to compatible arrays. With
storage hardware assistance, an ESXi host can perform these operations faster and more efficiently while
consuming far less CPU, memory, and storage fabric bandwidth. This behavior allows for far greater scale,
consolidation and flexibility in a VMware-virtualized infrastructure. VAAI primitives are enabled by default and
will automatically be invoked if ESXi detects that there is support from the underlying storage.

The Pure Storage FlashArray supports VAAI in ESXi 5.0 and later. The following five primitives are available for
block-storage hardware vendors to implement and support:

• Hardware Assisted Locking—commonly referred to as Atomic Test & Set (ATS), this uses the SCSI
command COMPARE and WRITE (0x89), which is invoked to replace legacy SCSI reservations during
the creation, alteration and deletion of files and metadata on a VMFS volume.

• Full Copy—leverages the SCSI command XCOPY (0x83), which is used to copy or move virtual disks.

• Block Zero—leverages the SCSI command WRITE SAME (0x93) which is used to zero-out disk regions
during virtual disk block allocation operations.

• Dead Space Reclamation—leverages the SCSI command UNMAP (0x42) to reclaim previously used
but now deleted space on a block SCSI device.

• Thin Provisioning Stun and Resume1—allows for underlying storage to inform ESXi that capacity has
been entirely consumed which causes ESXi to immediately “pause” virtual machines until additional
capacity can be provisioned/installed.

Pure Storage FlashArray supports ATS, XCOPY, WRITE SAME and UNMAP in Purity release 3.0.0 onwards on
ESXi 5.x and 6.x.

1 Thin Provisioning Stun & Resume is not currently supported by the Pure Storage FlashArray.

© Pure Storage 2015 | 7

Enabling VAAI

In order to determine if VAAI is enabled on an ESXi host use the esxcli command or the vSphere Web Client to
check if the value of the line “Int Value” is set to 1 (enabled):

All vSphere versions:

esxcli system settings advanced list -o /DataMover/HardwareAcceleratedMove
esxcli system settings advanced list -o /DataMover/HardwareAcceleratedInit
esxcli system settings advanced list -o /VMFS3/HardwareAcceleratedLocking

vSphere 5.5 U2 and later:

esxcli system settings advanced list -o /VMFS3/useATSForHBOnVMFS5

vSphere 6.0 and later:

esxcli system settings advanced list -o /VMFS3/EnableBlockDelete2

You will see an output similar to:

 Path: /VMFS3/HardwareAcceleratedLocking
 Type: integer
 Int Value: 1 Value is 1 if enabled
 Default Int Value: 1
 Min Value: 0
 Max Value: 1
 String Value:
 Default String Value:
 Valid Characters:
 Description: Enable hardware accelerated VMFS locking

Hardware acceleration is enabled by default within ESXi (except EnableBlockDelete) and all options never
require any configuration on the array to use out of the box. In the case they were somehow disabled in ESXi,
follow these steps to re-enable the primitives:

1. To enable atomic test and set (ATS) AKA hardware accelerated locking:

esxcli system settings advanced set -i 1 -o
/VMFS3/HardwareAcceleratedLocking

2. To enable hardware accelerated initialization AKA WRITE SAME:

esxcli system settings advanced set --int-value 1 --option
/DataMover/HardwareAcceleratedInit

2 This is the only VAAI option of the five that is not enabled by default in ESXi.

© Pure Storage 2015 | 8

3. To enable hardware accelerated move AKA XCOPY (full copy):

esxcli system settings advanced set --int-value 1 --option
/DataMover/HardwareAcceleratedMove

4. In VMware ESXi 5.5 U2 and later, VMware introduced using ATS for VMFS heartbeats. To enable this
setting:

esxcli system settings advanced set -i 1 -o /VMFS3/useATSForHBOnVMFS5

5. To enable guest OS UNMAP in vSphere 6.x only:

esxcli system settings advanced set -i 1 -o /VMFS3/EnableBlockDelete

The figure below describes the above steps pictorially using the vSphere Web Client. Go to an ESXi host and
then Settings, then Advanced System Settings and search for “Hardware” or “EnableBlockDelete”, as the
case may be, to find the settings3.

Figure 4. VAAI advanced options in the vSphere Web Client

3 The option useATSForHBOnVMFS5 is not currently available in the GUI and can only be set in the CLI.

© Pure Storage 2015 | 9

Figure 5. Enable Guest OS UNMAP in vSphere 6.x

Disabling Hardware Assisted Locking on Incompatible Arrays

Pure Storage does NOT support disabling hardware assisted locking on FlashArray devices. The
aforementioned setting is a host-wide setting and there may be situations when arrays that are incompatible
with hardware assisted locking are present. Leaving hardware assisted locking enabled on the host may
cause issues with that array. Therefore, instead of disabling hardware assisted locking host-wide, disable
hardware assisted locking for the legacy/incompatible array on a per-device basis. For instructions, refer to
the following VMware KB article:

http://kb.vmware.com/selfservice/microsites/search.do?language=en_US&cmd=displayKC&externalId=20068
58

http://kb.vmware.com/selfservice/microsites/search.do?language=en_US&cmd=displayKC&externalId=2006858
http://kb.vmware.com/selfservice/microsites/search.do?language=en_US&cmd=displayKC&externalId=2006858

© Pure Storage 2015 | 10

Hardware Assisted Locking or Atomic Test & Set

Prior to the introduction of VAAI Atomic Test & Set (ATS), ESXi hosts used device-level locking via full SCSI
reservations to get and control access to the metadata associated with a VMFS volume. In a cluster with
multiple hosts, all metadata operations for a given volume were serialized and I/O from other hosts had to
wait until whichever host currently holding the lock released it. This behavior not only caused metadata lock
queues, which slowed down operations like virtual machine provisioning, but also delayed any standard I/O to
a volume from ESXi hosts not currently holding the lock.

With VAAI ATS, the locking granularity is reduced to a much smaller level of control by only locking specific
metadata segments, instead of an entire volume. This behavior makes the metadata change process not only
very efficient, but importantly provides a mechanism for parallel metadata access while still maintaining data
integrity. ATS allows for ESXi hosts to no longer have to queue metadata change requests, which accordingly
accelerates operations that previously had to wait for a lock to release. Therefore, situations with large
amounts of simultaneous virtual machine provisioning/configuration operations will see the most benefit.
The standard use cases benefiting the most from ATS include:

• Large number of virtual machines on a single datastore (100s+).

• Extremely dynamic environments—numerous provisioning and de-provisioning of VMs.

• Virtual Desktop Infrastructure (VDI) common bulk operations such as boot storms.

Unlike some of the other VAAI primitives, the benefits of hardware assisted locking are not always readily
apparent in day to day operations. That being said, there are some situations where the benefit arising from
the enablement of hardware assisted locking can be somewhat profound. For example, see the following
case.

Hardware assisted locking provides the most notable assistance in situations where traditionally there would
be an exceptional amount of SCSI reservations over a short period of time. The most standard example of
this would be a mass power-on of a large number of virtual machines, commonly known as a boot storm.
During a boot storm, the host or hosts booting up the virtual machines require at least an equivalent number
of locks to the target datastore(s) of the virtual machines. These volume-level locks cause other workloads to
have reduced and unpredictable performance for the duration of the boot storm. Refer to the following
charts that show throughput and IOPS of a workload running during a boot storm with hardware accelerated
locking enabled and disabled.

© Pure Storage 2015 | 11

In this scenario, a virtual machine ran a workload across five virtual disks residing on the same datastore as
150 virtual machines that were all powered-on simultaneously. By referring to the previous charts, it’s clear
that with hardware assisted locking disabled the workload is deeply disrupted, resulting in inconsistent and
inferior performance during the boot storm. Both the IOPS and throughput4 vary wildly throughout the test.
When hardware assisted locking is enabled the disruption is almost entirely gone and the workload proceeds
essentially unfettered.

4 The scale for throughput is in MB/s but is reduced in scale by a factor of ten to allow it to fit in a readable fashion on the chart with
the IOPS values. So a throughput number on the chart of 1,000 is actually a throughput of 100 MB/s.

Figure 7. Performance test with hardware assisted locking disabled

Figure 6. Performance test with hardware assisted locking enabled

© Pure Storage 2015 | 12

Full Copy or Hardware Accelerated Copy

Prior to Full Copy (XCOPY) API support, when data needed to be copied from one location to another such as
with Storage vMotion or a virtual machine cloning operation, ESXi would issue a series of standard SCSI
read/write commands between the source and target storage location (the same or different device). This
resulted in a very intense and often lengthy additional workload to the source and target storage for the
duration of the copy operation. This I/O consequently stole available bandwidth from more “important” I/O
such as the I/O issued from virtualized applications. Therefore, copy or movement operations often had to be
scheduled to occur only during non-peak hours in order to limit interference with normal production storage
performance. This restriction effectively decreased the stated dynamic abilities and benefits offered by a
virtualized infrastructure.

The introduction of XCOPY support for virtual machine data movement allows for this workload to be almost
entirely offloaded from the virtualization stack onto the storage array. The ESXi kernel is no longer directly in
the data copy path and the storage array instead does all the work. XCOPY functions by having the ESXi host
identify a region that needs to be copied. ESXi then describes this space in a series of XCOPY SCSI commands
and sends them to the array. The array then translates these block descriptors and copies the data at the
described source location to the described target location entirely within the array. This architecture does not
require any data to be sent back and forth between the host and array—the SAN fabric does not play a role in
traversing the actual virtual machine data. The host only tells the array where the data that needs to be
moved resides and where to move it to—it does not need to tell the array what the data actually is and
subsequently has a profound effect on reducing the time to move data. XCOPY benefits are leveraged during
the following operations5:

• Virtual machine cloning

• Storage vMotion or offline migration

• Deploying virtual machines from template

During these offloaded operations, the throughput required on the data path is greatly reduced as well as the
load on the ESXi hardware resources (HBAs, CPUs etc.) initiating the request. This frees up resources for
more important virtual machine operations by letting the ESXi resources do what they do best: host virtual
machines, and lets the storage do what it does best: manage the storage.

On the Pure Storage FlashArray, XCOPY sessions are exceptionally quick and efficient. Due to the Purity
FlashReduce technology (features like deduplication, pattern removal and compression) similar data is not
stored on the FlashArray more than once. Therefore, during a host-initiated copy operation such as XCOPY,
the FlashArray does not need to copy the data—this would be wasteful. Instead, Purity simply accepts and
acknowledges the XCOPY requests and just creates new (or in the case of Storage vMotion, redirects

5 Note that there are VMware-enforced caveats in certain situations that would prevent XCOPY behavior and revert to traditional
software copy. Refer to VMware documentation for this information at www.vmware.com.

http://www.vmware.com/

© Pure Storage 2015 | 13

existing) metadata pointers. By not actually having to copy/move data the offload process duration is even
faster. In effect, the XCOPY process is a 100% inline deduplicated operation.

A standard copy process for a virtual machine containing, for example, 50 GB of data can take many minutes
or more. When XCOPY is enabled and properly configured, this time drops to a matter of a few seconds—
usually around ten for a virtual machine of that size.

XCOPY on the Pure Storage FlashArray works directly out of the box without any pre-configuration required.
But, there is one simple configuration change on the ESXi hosts that can increase the speed of XCOPY
operations. ESXi offers an advanced setting called the MaxHWTransferSize that controls the maximum
amount of data space that a single XCOPY SCSI command can describe. The default value for this setting is 4
MB. This means that any given XCOPY SCSI command sent from that ESXi host cannot exceed 4 MB of
described data.

The FlashArray, as previously noted, does not actually copy the data described in a XCOPY transaction—it just
moves or copies metadata pointers. Therefore, for the most part, the bottleneck of any given virtual machine
operation that leverages XCOPY is not the act of moving the data (since no data is moved), but it is instead a
factor of how quickly an ESXi host can send XCOPY SCSI commands to the array. As a result, copy duration
depends on the number of commands sent (dictated by both the size of the virtual machine and the
maximum transfer size) and correct multipathing configuration.

Figure 8. Pure Storage XCOPY implementation

© Pure Storage 2015 | 14

Accordingly, if more data can be described in a given XCOPY command, less commands overall need to be
sent and will subsequently take less time for the total operation to complete. For this reason Pure Storage
recommends setting the transfer size to the maximum value of 16 MB6.

The following commands can respectively be used to retrieve the current value and for setting a new one:

esxcfg-advcfg -g /DataMover/MaxHWTransferSize

esxcfg-advcfg -s 16384 /DataMover/MaxHWTransferSize

As mentioned earlier, general multipathing configuration best practices play a role in the speed of these
operations. Changes like setting the Native Multipathing Plugin (NMP) Path Selection Plugin (PSP) for Pure
devices to Round Robin and configuring the Round Robin IO Operations Limit to 1 can also provide an
improvement in copy durations (offloaded or otherwise). Refer to the VMware and Pure Storage Best
Practices Guide on www.purestorage.com for more information.

The following sections will outline a few examples of XCOPY usage to describe expected behavior and
performance benefits with the Pure Storage FlashArray. Most tests will use the same virtual machine:

• Windows Server 2012 R2 64-bit

• 4 vCPUs, 8 GB Memory

• One zeroedthick 100 GB virtual disk containing 50 GB of data (in some tests the virtual disk type is
different and/or size and this is noted where necessary)

If performance is far off from what is expected it is possible that the situation is not supported by VMware
for XCOPY offloading and legacy software-based copy is being used instead. The following VMware
restrictions apply and cause XCOPY to not be used:

• The source and destination VMFS volumes have different block sizes

• The source file type is RDM and the destination file type is a virtual disk

• The source virtual disk type is eagerzeroedthick and the destination virtual disk type is thin

• The source or destination virtual disk is any kind of sparse or hosted format

• Target virtual machine has snapshots

• The VMFS datastore has multiple LUNs/extents spread across different arrays

• Storage vMotion or cloning between one array and another

6 Note that this is a host-wide setting and will affect all arrays attached to the host. If a third party array is present and does not
support this change leave the value at the default or isolate that array to separate hosts.

© Pure Storage 2015 | 15

Please remember that the majority of these tests are meant to show relative performance
improvements. This is why most tests are run with XCOPY on and off. Due to differing virtual
machine size, guest OS workload, or resource utilization these numbers may be somewhat different
across the user base. These numbers should be used to set general expectations, they are not meant
to be exact predictions for XCOPY durations.

Deploy from Template

In this first test, the virtual machine was configured as a template residing on a VMFS on a FlashArray volume
(naa.624a9370753d69fe46db318d00011015). A single virtual machine was deployed from this template onto a
different datastore (naa.624a9370753d69fe46db318d00011014) on the same FlashArray. The test was run
twice, once with XCOPY disabled and again with it enabled. With XCOPY enabled, the “deploy from template”
operation was far faster and both the IOPS and throughput from the host were greatly reduced for the
duration of the operation.

The above images show the vSphere Web Client log of the “deploy from template” operation times, and it
can be seen from the comparison that the deployment operation time was reduced from over two minutes
down to seven seconds. The following images show the perfmon graphs gathered from esxtop comparing

Figure 10. Deploy from template operation with XCOPY enabled

Figure 9. Deploy from template operation with XCOPY disabled

© Pure Storage 2015 | 16

total IOPS and total throughput when XCOPY is enabled and disabled. Note that the scales are identical for
both the XCOPY-enabled and XCOPY-disabled charts.

Simultaneous Deploy From Template Operations

This improvement does not diminish when many virtual machines are deployed at once. In the next test the
same template was used but instead of one virtual machine being deployed, 8 virtual machines were
concurrently deployed from the template. This process was automated using the following basic PowerCLI
script.

Figure 11. Deploy from template IOPS improvement without XCOPY

Figure 12. Deploy from template throughput improvement with XCOPY

© Pure Storage 2015 | 17

for ($i=0; $i -le 7; $i++)

{

New-vm -vmhost <host name> -Name "<VM name prefix>$i" -Template <template name> -Datastore <datastore name> -
runasync

}

The preceding script deploys all 8 VMs to the same target datastore. It took 4.5 minutes for the deployment
of 16 VMs with XCOPY disabled to complete and it only took 35 seconds when XCOPY was enabled. For an
improvement of about 8x. A single VM deployment improvement (as revealed in the previous example) was
about 5x so the efficiency gains actually improve as deployment concurrency is scaled up. Non-XCOPY based
deployment characteristics (throughput/IOPS/duration) increase in an almost linear fashion along with an
increased VM count, while XCOPY-based deployment characteristics increase at a much slower comparative
rate due to the great ease at which the FlashArray can handle XCOPY operations. The chart shows this scaled
up from 1 to 16 VMs at a time and the difference between enabling and disabling XCOPY. As can be noted, the
difference really materializes as the concurrency increases.

Storage vMotion

Storage vMotion operations can also benefit from XCOPY acceleration and offloading. Using the same VM
configuration as the previous example, the following will show performance differences of migrating the VM
from one datastore to another with and without XCOPY enabled. Results will be shown for three different
scenarios:

1. Powered-off virtual machine

0

50

100

150

200

250

300

1 2 4 8 16

Concurrent VM Deployment Time (Seconds): XCOPY vs.
Non-XCOPY

XCOPY Non-XCOPY

Figure 13. XCOPY vs. Non-XCOPY Concurrent VM deployment time

© Pure Storage 2015 | 18

2. Powered-on virtual machine—but mostly idle

3. Powered-on virtual machine running a workload. 32 KB I/O size, mostly random, heavy on writes.

 The chart below shows the results of the tests.

The chart shows that both a “live” (powered-on) Storage vMotion and a powered-off migration can equally
benefit from XCOPY acceleration. The presence of a workload slows down the operation somewhat but
nevertheless a substantial benefit can still be observed.

Virtual Disk Type Effect on XCOPY Performance

In vSphere 5.x, the allocation method of the source virtual disk(s) can have a perceptible effect on the copy
duration of an XCOPY operation. Thick-type virtual disks (such as zeroedthick or eagerzeroedthick)
clone/migrate much faster than a thin virtual disk of the same size with the same data7. According to VMware
this performance delta is a design decision and is to be expected, refer to the following VMware KB for more
information:

http://kb.vmware.com/selfservice/microsites/search.do?language=en_US&cmd=displayKC&externalId=20706
07

7 For this reason, it is recommended to never use thin-type virtual disks for virtual machine templates as it will significantly increase
the deploy-from-template duration for new virtual machines.

127

7

131

8

138

9

0

20

40

60

80

100

120

140

160

Powered-on
No XCOPY

Powered-on
XCOPY

Powered-off
No XCOPY

Powered-off
XCOPY

Workload No
XCOPY

Workload
XCOPY

Storage vMotion Duration (Seconds)

Figure 14. Storage vMotion duration

http://kb.vmware.com/selfservice/microsites/search.do?language=en_US&cmd=displayKC&externalId=2070607
http://kb.vmware.com/selfservice/microsites/search.do?language=en_US&cmd=displayKC&externalId=2070607

© Pure Storage 2015 | 19

The reason for this is that thin virtual disks are often fragmented on the VMFS volume as they grow in 1 MB
increments (the block size of the VMFS) as needed. Since this growth is non-uniform and sporadic, it cannot
be guaranteed to be contiguous, and in fact probably is not. This caused XCOPY sessions involving thin virtual
disks to ignore the configured setting of the MaxHWTransferSize, which as best practices dictate should be
16 MB. Instead, it would use the block size of the VMFS, which is 1 MB, making the largest transfer size a thin
virtual disk could use limited to 1 MB. This markedly slows down XCOPY sessions.

This behavior has been fixed in vSphere 6.0, the performance delta between different types of virtual disks is
now gone. Thin virtual disk XCOPY sessions will now adhere to the MaxHWTransferSize and will attempt to
use as large as a transfer size as possible.

The following chart shows the duration in seconds of the three types of virtual disks during a “deploy from
template operation”. Note the specific mention of vSphere versions, the thin virtual disk test was run twice,
once for ESXi 5.x and once for ESXi 6.0. For comparative purposes it shows the durations for both XCOPY-
enabled operations and XCOPY-disabled operations. All virtual machines contained the same 75 GB of data in
one disk.

It can be noted that while each virtual disk type benefits from XCOPY acceleration, thick-type virtual disks
benefit the most when it comes to duration reduction of cloning operations in vSphere 5.x. Regardless, all
types benefit equally in reduction of IOPS and throughput. Also, standard VM clone or migration operations
display similar duration differences as the above “deploy from template” examples.

In vSphere 6.x, the difference between deployment time is gone across the three types of virtual disks.
Furthermore, improvement can be noted in non-XCOPY sessions as well for thin virtual disks.

Figure 15. Source virtual disk type effect on XCOPY performance

0

50

100

150

200

250

300

Thin 5.x Thin 6.x ZeroedThick 6.x EagerZeroedThick 6.x

"Deploy from Template" Duration by Virtual Disk Type

XCOPY Off XCOPY On

© Pure Storage 2015 | 20

Block Zero or WRITE SAME

ESXi supports three disk formats for provisioning virtual disks:

1. Eagerzeroedthick (thick provision eager zeroed)—the entirety of the virtual disk is completely
reserved and pre-zeroed upon creation on the VMFS. This virtual disk allocation mechanism offers the
most predictable performance and highest level of protection against capacity exhaustion.

2. Zeroedthick (thick provision lazy zeroed)—this format reserves the space on the VMFS volume upon
creation but does not pre-zero the encompassed blocks until the guest OS writes to them. New
writes cause iterations of on-demand zeroing in segments of the block size of the target VMFS
(almost invariably 1 MB with VMFS 5). There is a slight performance impact on writes to new blocks
due to the on-demand zeroing.

3. Thin (thin provision)—this format neither reserves space on the VMFS volume nor pre-zeros blocks.
Space is reserved and zeroed on-demand in segments in accordance to the VMFS block size. Thin
virtual disks allow for the highest virtual machine density but provide the lowest protection against
possible capacity exhaustion. There is a slight performance impact on writes to new blocks due to the
on-demand zeroing.

Prior to WRITE SAME support, the performance differences between these allocation mechanisms were
distinct. This was due to the fact that before any unallocated block could be written to, zeros would have to
be written first, causing an allocate-on-first-write penalty. Therefore, for every new block that was to be
written to, there were two writes, the zeros then the actual data. For thin and zeroedthick virtual disks, this
zeroing was on-demand so the effect was observed by the guest OS in the virtual machine that was issuing
writes to new blocks. For eagerzeroedthick, zeroing occurred during deployment and therefore large virtual
disks took a long time to create but with the benefit of eliminating any zeroing penalty for new writes.

To reduce this latency, VMware introduced WRITE SAME support. WRITE SAME is a SCSI command that tells a
target device (or array) to write a pattern (in this case, zeros) to a target location. ESXi utilizes this command
to avoid having to actually send a payload of zeros. Instead, ESXi simply communicates to an array that it
needs to write zeros to a certain location on a certain device. This not only reduces traffic on the SAN fabric,
but also speeds up the overall process since the zeros do not have to traverse the data path.

This process is optimized even further on the Pure Storage FlashArray. Since the array does not store space-
wasting patterns like contiguous zeros, the metadata is created or changed to simply denote that these
locations are supposed to be all-zero so any subsequent reads will result in the array returning contiguous
zeros to the host. This additional array-side optimization further reduces the time and penalty caused by pre-
zeroing of newly-allocated blocks.

The following sections will outline a few examples of WRITE SAME usage to describe expected behavior and
performance benefits of using WRITE SAME on the Pure Storage FlashArray.

© Pure Storage 2015 | 21

Deploying Eagerzeroedthick Virtual Disks

The most noticeable operation in which WRITE SAME helps is with the creation of eagerzeroedthick virtual
disks. Due to the fact that the zeroing process must be completed during the create operation, WRITE SAME
has a dramatic impact on the duration of virtual disk creation and practically eliminates the added traffic that
used to be caused by the traditional zeroing behavior.

The following chart shows the deployment time of four differently sized eagerzeroedthick virtual disks when
WRITE SAME was enabled (in orange) and disabled (in blue). The enabling of WRITE SAME, on average,
reduces the deployment time of these types of virtual disks to about 6x faster regardless of the size.

WRITE SAME also works well in scale on the FlashArray. Below are the results of a test when four 100GB
eagerzeroedthick virtual disks were deployed (with vmkfstools) simultaneously.

Figure 17. Total simultaneous deployment time for eagerzeroedthick virtual disks

Figure 16. Eagerzeroedthick virtual disk deployment time differences

6

14

28

128

37

74

185

759

0 100 200 300 400 500 600 700 800

50 GB

100 GB

250 GB

1 TB

Eagerzeroedthick VMDK Creation Time

WRITE SAME Disabled WRITE SAME Enabled

267

23

0

50

100

150

200

250

300

WRITE SAME Disabled WRITE SAME Enabled

4 Simultaneous 100 GB EZT VMDKs

© Pure Storage 2015 | 22

In comparison to the previous chart, where only one virtual disk was deployed at a time, the deployment
duration of an eagerzeroedthick virtual disk without WRITE SAME increased almost linearly with the added
number of virtual disks (taking 3.5x longer with 4x more disks). When WRITE SAME was enabled, the increase
wasn’t even twofold (taking 1.6x times longer with 4x more disks). It can be concluded that the Pure Storage
FlashArray can easily handle and scale with additional simultaneous WRITE SAME activities.

Zeroedthick and Thin Virtual Disks Zero-On-New-Write Performance

In addition to accelerating up eagerzeroedthick deployment, WRITE SAME also improves performance within
thin and zeroedthick virtual disks. Since both types of virtual disks zero-out blocks only upon demand (new
writes to previously unallocated blocks) these new writes suffer from additional latency when compared to
over-writes. The introduction of WRITE SAME reduces this latency by speeding up the process of initializing
this space.

The following test was created to ensure that a large proportion of the workload was new writes so that the
write workload always encountered the allocation penalty from pre-zeroing (with the exception of the
eagerzeroedthick test which was more or less a control). Five separate tests were run:

1. Thin virtual disk with WRITE SAME disabled.

2. Thin virtual disk with WRITE SAME enabled.

3. Zeroedthick virtual disk with WRITE SAME disabled.

4. Zeroedthick virtual disk with WRITE SAME enabled.

5. Eagerzeroedthick virtual disk

The workload was a 100% sequential 32 KB write profile in all tests. As expected the lowest performance
(lowest throughput, lowest IOPS and highest latency) was with thin or zeroedthick with WRITE SAME
disabled (zeroedthick slightly out-performed thin). Enabling WRITE SAME improved both, but
eagerzeroedthick virtual disks out-performed all of the other virtual disks regardless of WRITE SAME use.
With WRITE SAME enabled eagerzeroedthick performed better than thin and zeroedthick by 30% and 20%
respectively in both IOPS and throughput, and improved latency from both by 17%.

The following three charts show the results for throughput, IOPS and latency.

© Pure Storage 2015 | 23

Figure 18. IOPS, Throughput and Latency differences across virtual disk types

73
78

74
79

95

50
55
60
65
70
75
80
85
90
95

100

Thin (WRITE SAME
Disabled)

Thin (WRITE SAME
Enabled)

Zeroedthick
(WRITE SAME

Disabled)

Zeroedthick
(WRITE SAME

Enabled)

Eagerzeroedthick

Throughput (MB/s)

0.44

0.41

0.44

0.41

0.34

0.3
0.32
0.34
0.36
0.38

0.4
0.42
0.44
0.46

Thin (WRITE
SAME Disabled)

Thin (WRITE
SAME Enabled)

Zeroedthick
(WRITE SAME

Disabled)

Zeroedthick
(WRITE SAME

Enabled)

Eagerzeroedthick

Latency

2247
2396

2255
2405

2910

1000

1500

2000

2500

3000

Thin (WRITE
SAME Disabled)

Thin (WRITE
SAME Enabled)

Zeroedthick
(WRITE SAME

Disabled)

Zeroedthick
(WRITE SAME

Enabled)

Eagerzeroedthick

IOPS

© Pure Storage 2015 | 24

Note that all of the charts do not start the vertical axis at zero—this is to better illustrate the deltas between
the different tests.

It is important to understand that these tests are not meant to authoritatively describe
performance differences between virtual disks types—instead they are meant to express
the performance improvement introduced by WRITE SAME for writes to uninitialized
blocks. Once blocks have been written to, the performance difference between the various
virtual disk types evaporates. Furthermore, as workloads become more random and/or
more read intensive, this overall performance difference will become less perceptible. This
section is mostly a lab exercise, except for the most performance-sensitive workloads,
performance should not be a huge factor in virtual disk type choice.

From this set of tests we can conclude:

1. Regardless of WRITE SAME status, eagerzeroedthick virtual disks will always out-perform the other
types for new writes.

2. The latency overhead of zeroing-on-demand with WRITE SAME disabled is about 30% (in other words
the new write latency of thin/zeroedthick is 30% greater than with eagerzeroedthick).

a. The latency overhead is reduced from 30% to 20% when WRITE SAME is enabled. The duration
of the latency overhead is also reduced when WRITE SAME is enabled.

3. The IOPS and throughput reduction caused by zeroing-on-demand with WRITE SAME disabled is
about 23% (in other words the possible IOPS/throughput of thin/zeroedthick to new blocks is 23%
lower than with eagerzeroedthick).

a. The possible IOPS/throughput reduction to new blocks is reduced from 23% to 17% when
WRITE SAME is enabled.

© Pure Storage 2015 | 25

Dead Space Reclamation or UNMAP

In block-based storage implementations, the file system is managed by the host, not the array. Because of
this, the array does not typically know when a file has been deleted or moved from a storage volume and
therefore does not know when or if to release the space. This behavior is especially detrimental in thinly-
provisioned environments where that space could be immediately allocated to another device/application or
just returned to the pool of available storage.

In vSphere 5.0 Update 1, VMware introduced Dead Space Reclamation which makes use of the SCSI UNMAP
command to help remediate this issue. UNMAP enables an administrator to initiate a reclaim operation from
an ESXi host to compatible block storage devices. The reclaim operation instructs ESXi to inform the storage
array of space that previously had been occupied by a virtual disk and is now freed up by either a delete or
migration and can be reclaimed. This enables an array to accurately manage and report space consumption of
a thinly-provisioned datastore and enables users to better monitor and forecast new storage requirements.

In ESXi 5.x, the advanced ESXi option EnableBlockDelete is defunct and does not enable or disable
any behavior when changed. This option is re-introduced in ESXi 6.0 and is fully functional. Please
refer to the end of this section for discussion concerning this parameter.

To reclaim space in vSphere 5.0 U1 through 5.1, SSH into the ESXi console and run the following commands:

1. Change into the directory of the VMFS datastore you want to run a reclamation on:

cd /vmfs/volumes/<datastore name>

2. Then run vmkfstools to reclaim the space by indicating the percentage of the free space you
would like to reclaim (up to 99%):

vmkfstools -y 99

It should be noted that while UNMAP on the FlashArray is a quick and unobtrusive process, ESXi does create a
balloon file when using the vmkfstools method to fill the entire specified range of free space for the duration
of the reclaim process. This could possibly lead to a temporary out-of-space condition on the datastore if
there are thin virtual disks that need to grow. When a datastore contains a large amount of thin virtual disks,
large UNMAP reclaim percentages should be entered with care or avoided entirely. This is not an issue if the
virtual disks are all thick provisioned, or the ESXi server is version 5.5 or later.

To reclaim space in vSphere 5.5, the vmkfstools -y option has been deprecated and UNMAP is now
available in esxcli. UNMAP can be run anywhere esxcli is installed and therefore does not require an
SSH session:

1. Run esxcli and supply the datastore name. Optionally, a block iteration count can be specified,
otherwise it defaults to reclaiming 200 MB per iteration:

esxcli storage vmfs unmap -l <datastore name> -n (blocks per iteration)

© Pure Storage 2015 | 26

The esxcli option can also be leveraged from the VMware vSphere PowerCLI using the
cmdlet GetEsxCli:

$esxcli=get-esxcli -VMHost <ESXi host>

$esxcli.storage.vmfs.unmap(10000, "<datastore name>", $null)

The esxcli version of UNMAP allows the user to delineate the number of blocks unmapped per iteration of
the process. The default value is 200 (in other words 200 MB) and can be increased or decreased as
necessary. Since the UNMAP process is a workload of negligible impact on the Pure Storage FlashArray, this
value can be increased to dramatically reduce the duration of the reclaim process. The time to reclaim
reduces exponentially as the block count increases. Therefore, increasing the block count to something
sufficiently higher is recommended. While the FlashArray can handle very large values for this, ESXi does not
support increasing the block count any larger than 1% of the free capacity of the target VMFS volume (one
block equals one megabyte). Consequently, the best practice for block count during UNMAP is no greater
than 1% of the free space.

So as an example, if a VMFS volume has 1,048,576 MB free, the largest block count supported is 10,485
(always round down). If you specify a larger value the command will still be accepted, but ESXi will override
the value back down to the default of 200 MB, which will profoundly slow down the operation. In order to
see if the value was overridden or not, you can check the hostd.log file in the /var/log/ directory on the target
ESXi host. For every UNMAP operation there will be a series of messages that dictate the block count for
every iteration. Examine the log and look for a line that indicates the UUID of the VMFS volume being
reclaimed, the line will look like the example below:

Unmap: Async Unmapped 5000 blocks from volume 545d6633-4e026dce-d8b2-
90e2ba392174

A simple method to calculate this 1 % value is via PowerCLI. Below is a simple example to take in a datastore
object by name and return a proper block count to enter into an UNMAP command.

$datastore = get-datastore <datastore name>

$blockcount = [math]::floor($datastore.FreeSpaceMB * .01)

That will change free capacity into a rounded off number and then give you the proper block count for any
given datastore. Enter that number ($blockcount in the above instance) into an UNMAP command and start
the UNMAP procedure.

It is imperative to calculate the block count value based off of the 1% of the free space only when that
capacity is expressed in megabytes—since VMFS 5 blocks are 1 MB each. This will allow for simple
and accurate identification of the largest allowable block count for a given datastore. Using GB or TB
can lead to rounding errors, and as a result, too large of a block count value. Always round off
decimals to the lowest near MB in order to calculate this number (do not round up).

An example full UNMAP script can be found here.

The UNMAP procedure (regardless of the ESXi version) causes Purity to remove the metadata pointers to the
data for that given volume and if no other pointers exist, the data is also tagged for removal. Therefore, used
capacity numbers may not change on the array space reporting after an UNMAP operation. Since the data is
often heavily deduplicated, it is highly possible that the data that was reclaimed is still in use by another

https://github.com/codyhosterman/powercli/blob/master/unmap.ps1

© Pure Storage 2015 | 27

volume or other parts within the same volume on the array. In that case, the specific metadata pointers are
only removed and the data itself remains since it is still in use by other metadata pointers. That being said, it is
still important to UNMAP regularly to make sure stale pointers do not remain in the system. Regular
reclamation in the long term allows this data to eventually be removed as the remaining pointers are deleted.

From ESXi 5.5 Patch 3 and later, any UNMAP operation against a datastore that is 75% or more full will
use a block count of 200 regardless to any block count specified in the command. For more
information refer to the VMware KB article here.

UNMAP Operation Duration

The following section will outline a few examples of UNMAP usage to describe expected behavior and
performance characteristics of using UNMAP on the Pure Storage FlashArray.

For the esxcli UNMAP method, the only configurable option is the block count per iteration—and as
previously mentioned Pure Storage recommends setting this to a higher number in order to complete the
UNMAP operation as fast as possible. The below chart shows the indirect relationship between the duration
of the UNMAP operation and the number of blocks per iteration.

Figure 19. Relationship of block counts and UNMAP duration

http://kb.vmware.com/selfservice/microsites/search.do?language=en_US&cmd=displayKC&externalId=2086747

© Pure Storage 2015 | 28

In the tests shown in the above charts, three datastores with different amounts of free capacity (1 TB, 4 TB
and 8 TB) were tested with a large variety of block counts. As can be noted, all increments show great
improvement in UNMAP operation duration as the block count increases from 200 (default) to about 40,000.
At this point, increases in reclaim times start to display diminishing returns.

It is important to note that the duration of the UNMAP procedure is dictated by the following things:

• The amount of free capacity on the VMFS volume. The total capacity is irrelevant.

• The specified block count.

• The workload on the target VMFS (heavy workloads can slow the rate at which ESXi issues UNMAP).

In ESXi 5.5 GA release through ESXi 5.5 U2, the block count was configurable to any number the user desired.
It was discovered that the use of large block counts in certain situations occasionally caused ESXi physical
CPU lockups which then could lead to a crash of the ESXi host. Therefore, VMware introduced a fix in ESXi 5.5
Patch 3, which causes the following block count behavior changes:

1. ESXi will override any block count larger than 1% of the free capacity of the target VMFS datastore and
force it back to 200. Therefore, use block counts no greater than 1% of the free space to provide for
the best UNMAP duration performance.

2. For volumes that are 75% full or greater no block count other than 200 is supported. Any other block
count entered will be ignored in this situation and 200 will be used instead.

The Pure Storage FlashArray, as displayed in the previous chart, prefers a large as possible block count in
order to finish the reclaim operation as quickly as possible. Since ESXi now enforces an upper limit of 1 % of
the free space, that is the recommended best practice for reclamation on the Pure Storage FlashArray for all
versions of ESXi 5.5 and later (before and after the VMware patch). This provides for the quickest possible
reclaim duration while also removing susceptibility to ESXi host crashes.

The VMware KB article:

http://kb.vmware.com/selfservice/microsites/search.do?language=en_US&cmd=displayKC&externalId=20867
47

The VMware patch:

http://kb.vmware.com/selfservice/search.do?cmd=displayKC&docType=kc&docTypeID=DT_KB_1_1&externalI
d=2087358

http://kb.vmware.com/selfservice/microsites/search.do?language=en_US&cmd=displayKC&externalId=2086747
http://kb.vmware.com/selfservice/microsites/search.do?language=en_US&cmd=displayKC&externalId=2086747
http://kb.vmware.com/selfservice/search.do?cmd=displayKC&docType=kc&docTypeID=DT_KB_1_1&externalId=2087358
http://kb.vmware.com/selfservice/search.do?cmd=displayKC&docType=kc&docTypeID=DT_KB_1_1&externalId=2087358

© Pure Storage 2015 | 29

In-Guest UNMAP in ESXi 6.x

The discussion above speaks only about space reclamation directly on a VMFS volume. This pertains to dead
space accumulated by the deletion or migration of virtual disks, ISOs or swap files (mainly). The CLI-initiated
UNMAP operation does not pertain though to dead space accumulated inside of a virtual disk. Dead space
accumulates inside of a virtual disk in the same way that it accumulates on a VMFS volume—deletion or
movement of files.

Prior to ESXi 6.0 and virtual machine hardware version 11, guests could not leverage native UNMAP
capabilities on a virtual disk because ESXi virtualized the SCSI layer and did not report UNMAP capability to
the guest.

In ESXi 6.0, guests running in a virtual machine using hardware version 11 can now issue UNMAP directly to
thin virtual disks. The process is as follows:

1. A guest application or user deletes a file from a file system residing on a thin virtual disk

2. The guest automatically (or manually) issues UNMAP to the guest file system on the virtual disk

3. The virtual disk is then shrunk in accordance to the amount of space reclaimed inside of it.

4. If EnableBlockDelete is enabled, UNMAP will then be issued to the VMFS volume for the space that previously
was held by the thin virtual disk. The capacity is then reclaimed on the FlashArray.

Currently, in-guest UNMAP support is limited to Windows 2012 R2 or Windows 8. Linux requires a newer
version of SCSI support that is under consideration for future versions of ESXi.

Prior to ESXi 6.0, the parameter EnableBlockDelete was a defunct option that was previously only functional
in very early versions of ESXi 5.0 to enable or disable automated VMFS UNMAP. This option is now functional
in ESXi 6.0 and has been re-purposed to allow in-guest UNMAP to be translated down to the VMFS and
accordingly the SCSI volume. By default, EnableBlockDelete is disabled and can be enabled via the Web Client
or CLI utilities.

In-guest UNMAP support does not require this parameter to be enabled. Enabling this parameter only allows
in-guest UNMAP to be translated down to the VMFS layer. For this reason, enabling this option is a best
practice for ESXi 6.x and later.

Figure 20. Enabling EnableBlockDelete in the vSphere 6.0 Web Client interface

© Pure Storage 2015 | 30

Monitoring VAAI with ESXTOP

The simplest way to specifically monitor VAAI activity is through the ESXi performance monitoring tool
ESXTOP. ESXTOP is both a real-time monitoring tool and a time-period batch performance gathering tool.

To monitor activity in real-time, log into the ESXi shell via SSH (SSH is not enabled by default—this can be
done through the console or from within the vSphere Web Client in the security profile area) and run the
ESXTOP command.

ESXTOP offers a variety of different screens for the different performance areas it monitors. Each screen can
be switched to by pressing a respective key. See the table below for the options.

Key Description

c CPU resources

p CPU power

m Memory resources

d Disk adapters

u Disk devices

v Virtual machine disks

n IP Network resources

i Interrupts

Figure 21. Starting ESXTOP

© Pure Storage 2015 | 31

Figure 22. ESXTOP columns

In most cases for VAAI information the disk devices screen is the pertinent one, so press “u” to navigate to
that screen. By default, VAAI information is not listed and must be added. To add VAAI information press “f”
and then “o” and “p”. To deselect other columns simply type their corresponding letter. Press enter to
return.

The CLONE or MBC counters refer to XCOPY, ATS refers to Hardware Assisted Locking, ZERO refers to WRITE
SAME and DELETE refers to UNMAP. If a collection of this data for later review is preferred over real time
analysis esxtop can be gathered for a specific amount of time and saved as a CSV file.

© Pure Storage 2015 | 32

Batch mode, as it is referred to, takes a configuration of ESXTOP and runs for a given interval. This can create
a tremendous amount of data so it is advised to remove any and all counters that are not desired using the
“f” option and saving the configuration with “W”.

Once the configuration is complete (usually just VAAI info and possibly some other storage counters) ESXTOP
can be run again in batch mode by executing:

esxtop -b -d 5 -n 50 > /vmfs/volumes/datastore/esxtopresults.csv

Make sure the csv file is output onto a VMFS volume and not onto the local file system. Putting it locally will
often truncate the csv file and performance data will be lost.

The “-b” indicates batch mode, “-d” is a sample period and “-n” is how many intervals should be taken, so in
this example it would take counters every 5 seconds, 50 times. So a total capture period of 250 seconds.

© Pure Storage 2015 | 33

References

1. Interpreting esxtop statistics - http://communities.vmware.com/docs/DOC-11812

2. Disabling VAAI Thin Provisioning Block Space Reclamation (UNMAP) in ESXi 5.0 -
kb.vmware.com/kb/2007427

3. Pure Storage and VMware vSphere Best Practices Guide http://info.purestorage.com/WP-
PureStorageandVMwarevSphereBestPracticesGuide_Request.html

4. VMware Storage APIs –Array Integration http://www.vmware.com/files/pdf/techpaper/VMware-
vSphere-Storage-API-Array-Integration.pdf

5. Frequently Asked Questions for vStorage APIs for Array
Integration http://kb.vmware.com/selfservice/microsites/search.do?language=en_US&cmd=displayKC
&externalId=1021976

About the Author

Cody Hosterman is a VMware-focused Solutions Architect at Pure Storage since
2014. His primary responsibility is overseeing, testing, documenting, and
demonstrating VMware-based integration with the Pure Storage FlashArray
platform. Cody has been working in vendor enterprise storage/VMware
integration roles since 2008.

Cody graduated from the Pennsylvania State University with a bachelors degreee
in Information Sciences & Technology in 2008. Special areas of focus include core
ESXi, vRealize, Site Recovery Manager and PowerCLI. Cody has been named a
VMware vExpert from 2013 through 2015.

 Blog: http://www.codyhosterman.com

Twitter: @codyhosterman

http://communities.vmware.com/docs/DOC-11812
http://info.purestorage.com/WP-PureStorageandVMwarevSphereBestPracticesGuide_Request.html
http://info.purestorage.com/WP-PureStorageandVMwarevSphereBestPracticesGuide_Request.html
http://www.vmware.com/files/pdf/techpaper/VMware-vSphere-Storage-API-Array-Integration.pdf
http://www.vmware.com/files/pdf/techpaper/VMware-vSphere-Storage-API-Array-Integration.pdf
http://kb.vmware.com/selfservice/microsites/search.do?language=en_US&cmd=displayKC&externalId=1021976
http://kb.vmware.com/selfservice/microsites/search.do?language=en_US&cmd=displayKC&externalId=1021976
http://www.codyhosterman.com/
https://twitter.com/codyhosterman

© Pure Storage 2015 | 34

Pure Storage, Inc.
Twitter: @purestorage

 www.purestorage.com

650 Castro Street, Suite #260

Mountain View, CA 94041

T: 650-290-6088
F: 650-625-9667

Sales: sales@purestorage.com

Support: support@purestorage.com
Media: pr@purestorage.com

General: info@purestorage.com

© 2015 Pure Storage, Inc. All rights reserved. Pure Storage, Pure1, and the P Logo are trademarks of Pure Storage, Inc. All other trademarks are the property of their respective owners.

http://www.purestorage.com/
mailto:sales@purestorage.com
mailto:support@purestorage.com
mailto:pr@purestorage.com
mailto:info@purestorage.com

	Executive Summary
	Goals and Objectives
	Audience
	Pure Storage Introduction
	VAAI Best Practices Checklist
	Introduction to VAAI
	Enabling VAAI
	Disabling Hardware Assisted Locking on Incompatible Arrays

	Hardware Assisted Locking or Atomic Test & Set
	Full Copy or Hardware Accelerated Copy
	Deploy from Template
	Simultaneous Deploy From Template Operations
	Storage vMotion
	Virtual Disk Type Effect on XCOPY Performance

	Block Zero or WRITE SAME
	Deploying Eagerzeroedthick Virtual Disks
	Zeroedthick and Thin Virtual Disks Zero-On-New-Write Performance

	Dead Space Reclamation or UNMAP
	UNMAP Operation Duration
	In-Guest UNMAP in ESXi 6.x

	Monitoring VAAI with ESXTOP
	References
	About the Author

